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LElTER TO THE EDITOR 

Dynamic universality classes for diffusion-limited aggregation 
and lattice animals 

A Christou and R B Stinchcombe 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, 
UK 

Received 4 February 1986 

Abstract. A recent application of the real space renormalisation group to the problem of 
anomalous diffusion on Witten-Sander clusters is generalised and we demonstrate that 
these clusters lie in a distinct dynamic universality class from random lattice animals. 

A feature arising from the renormalisation group ( RG) theory (Wilson and Kogut 1974) 
is that diverse systems undergoing continuous phase transitions, characterised by a 
diverging controlling length, partition themselves into universality classes. Within a 
universality class, systems which seem, in a superficial sense at least, very different to 
each other have critical behaviour which is essentially the same, the apparent differences 
becoming irrelevant as one approaches criticality. 

The critical behaviour for a particular system is governed by a set of critical 
exponents and a subset of these are the same for all the constituent systems of a 
particular universality class. It is convenient to divide the set of universality classes 
into two groups: static and dynamic?. Systems within the same static universality class 
will have the same exponents characterising the singularities in the static properties 
and equivalently for dynamic universality classes. We recall that two systems may be 
in the same static universality class but in distinct dynamic ones. 

In RG theory one may represent the set of universality classes by an isomorphic 
set of critical surfaces embedded in a parameter space. Systems with the same critical 
behaviour will flow towards the same critical point. 

In this letter we generalise the real space renormalisation group (RSRG) method 
presented by Christou and Stinchcombe (1986) in order to investigate two related 
models: diffusion-limited aggregation ( DLA) (Witten and Sander 1981) and random 
lattice animals (Family 1983). It has been shown that DLA, a kinetic growth process, 
and lattice animals, which are equilibrium random clusters, are in distinct static 
universality classes in both the isotropic (Gould et a1 1983) and directed (Green 1984) 
cases. In the following we extend the parameter space used by these authors to show 
that these respective systems also lie in distinct dynamic universality classes. 

We consider the model of generalised DLA in two dimensions described by Gould 
er a1 (1983) in which the role of the seed site in the growth process of DLA is replaced 
by a general random cluster. It has been shown using Monte Carlo methods (Sander 
and Witten 1982) that the critical properties of the aggregate are unchanged in the 

t In the context of this letter, the term ‘dynamic’ is being used in the manner discussed by Stanley er a /  (1985). 
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limit of large cluster growth relative to seed size. Gould et a1 (1983) used a two- 
parameter b = 2 single cell RSRG method to show that these models had different static 
fixed points in a two-dimensional parameter space implying, for example, distinct 
fractal dimensions d f  (Mandelbrot 1982). A procedure analogous to this was developed 
by Green (1984); however she constrained the cluster to grow only eastwards or 
northwards favouring growth along the (1 ,  1 )  axis. Green also observed distinct static 
fixed points using a b = 2 renormalisation. 

Now, the dynamic exponent for these systems is the random walk dimensionality 
d ,  (Christou and Stinchcombe 1986 and references therein) for random walks on the 
fractal space. In order to determine the structure of the parameter space from which 
one extracts d, ,  three parameters, or fugacities, are used. A fugacity K is associated 
with each occupied site of the fractal cluster, another fugacity W is associated with 
each step of the incoming particles and a third fugacity V is associated with each step 
of a ‘myopic ant’ (de Gennes 1976) confined to walk on the cluster. 

Within the RSRG procedure the square lattice is mapped onto one isomorphic to it 
together with an accompanied length scale dilatation of factor b. The parameters K ,  
W, V are mapped onto K‘, W’, V’ on the new lattice. This may be represented as a 
flow in parameter space as pointed out above. A cluster approximation (see Stanley 
et a1 1982 and references therein) is used to determine the explicit RG transformation. 
We seek qualitative information relating to the RG flow in parameter space, and not 
accurate numerical values of the dynamic exponent d, ,  and we accordingly confine 
our attention to the simplest, b = 2, renormalisation. To obtain reliable values for the 
exponents at the various fixed points one must use larger cells in order to diminish 
cell interfacing problems (Stanley et a1 1982). We work on the premise that these 
interfacing problems do not aff est the qualitative structure of the flow through parameter 
space, and in particular that the universality classes remain unaffected. 

We evaluate the RG transformations in a manner described by Christou and 
Stinchcombe (1986) except that one must now consider all possible lattice animal 
configurations (both spanning and non-spanning) as seed sites in the b = 2 cell. For 
the static parameters K ,  W, Gould et a1 (1983) obtain the following recursion relations: 

K ’ =  3 K 3 +  K 4 + 6 K 3  W(1+ W+ 2 W2) + 4 K 4  W( 1 + 2  W + 2  W2+4  W3) ( 1 )  

W’= W2+ 2 W3 + 5 W4+ 14 W5 +2KW2( 1 + W+ 3 W2 + 5 W3) + K 2  W2( 1 + 2 W’). (2) 

Equation (2) contains all possible spanning random walks in a cell with some sites 
(non-spanning) already occupied. 

f K ’  V’ = (f V2 + 4 V3 + & V4 + 8 V’)( aK + 2 K W + K ’) 
Similarly for V we obtain the following transformation: 

+ ($V3 + # V 5 ) ( a K 3  + 2K3 W+ K 3 )  + (t V2 +aV4)( a K 3  + 2K3 W+ K 3 )  

+ (d V2 + V3 + & V4 + $ V5)(pK4 + 8K4 W2 + 4K4 W + K ‘) (3) 
where a = 2 W 2 ( 1 + 2 W )  and p = 8 W 3 ( 1 + 2 W ) .  

Equations ( l ) ,  (2) and (3) have the flow pattern in parameter space shown in figure 
1 .  This demonstrates that DLA and lattice animals are indeed in distinct dynamic 
universality classes. The triply unstable critical fixed point E is the dynamic fixed 
point for DLA where one evaluates the eigenvalue A, = (av’/aV),t,W.,V. from which 
one determines d ,  = log A,/log b. The significance of the other fixed points is indicated 
in table 1. We note that the behaviour of the flow lines in the K W plane is identical 
to that found by Gould et a1 since K‘=f(K, W) and W’= g ( K ,  W). 
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Figure 1. Renormalisation group flow diagram for transformations ( l ) ,  (2), (3) and (4), 
( 5 ) ,  (6). The arrows indicate the local flow direction. The significance of the fixed points 
A, B, C, D, E, F, G is indicated in table 1.  

Table 1. Fixed points for isotropic (upper of two numbers in each pair) generalised DLA 
and the corresponding directed problem (lower number in each pair) (refer to figure 1) .  

~~ ~~~ ~ 

Nature of fixed point K *  W* V* 

Lattice animals, static 

DLA, static 

Random walk, static 

Lattice animals, dynamic 

DLA, dynamic 

Random walk, dynamic 
Random walk, static 
(kinetic interpretation) 

0.532 
0.618 
0.392 
0.420 
0 
0 
0.532 
0.618 
0.392 
0.420 
0 
0 
0 
0 

0 0 
0 0 
0.274 0 
0.337 0 

I 0 
0 1.033 
0 1.058 
0.274 1.048 
0.337 1.080 
?.347 0.963 
2 0.950 
0 0.963 
0 0.950 

y.347 0 

We now perform the analogous calculation for the problem of directed generalised 
"lattice animals. The recursion relations K and W for a b = 2 transformation are 
given by Green (1984): 

K'=2K3+K4+4K3W2(1+2W)+8K4W3(1+2W)+4K3W+4K4W(1+2W) (4) 

W'= W2+2W3+ W2K2+2KW2(1+ W) ( 5 )  
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and for the generalised directed problem we obtain the following transformation for V’: 

$K’ V’ = (f V2 + $ V 3  + & V4 +e V’)( a K 3  + 2 K 3  W + K 3 )  

+ ($ V3 + V’)( a K  + 2 K W + K 3 )  + (4 V 2  + 4 V4)(0) 
+(dV2+&V3+&V4+$V5)(PK4+8K4W2+4K4W+ K4) ( 6 )  

a and P being defined as above. 
These equations yield a flow diagram qualitatively equivalent to that obtained in 

the isotropic problem. We therefore conclude that directed DLA and directed lattice 
animals are also in distinct dynamic universality classes. 

As a final remark we note that the fixed points F and G of figure 1 are artefacts 
the method in both the isotropic and directed calculations. This is so since when K = 0 
there is no cluster available on which anomalous diffusion (characterised by the 
parameter V) can occur. However on examining the behaviour of the recursion relations 
as K + 0 one observes that only quasi-one-dimensional spanning clusters contribute 
weight to the RHS of equations (3) and (6). One may therefore identify F as the fixed 
point for random walks on a I D  substrate. However random walks in one dimension 
have identical critical behaviour to those in two dimensions ( d ,  = 2), and static and 
dynamic random walk fixed points are equivalent ( d , =  dw), We therefore interpret F 
as the dynamic fixed point for random walks in two dimensions. Similarly, G is to be 
identified as the static fixed point for random walks on a one-dimensional substrate 
where the kinetic growth interpretation for the walks (Nakanishi and Family 1984) 
has been used in generating the recursion relations. The above view is consistent with 
the distribution of the fixed points for the other two systems. 

The support of the SERC, in the form of a Research Studentship, is gratefully 
acknowledged by AC. 
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